October 1995

National Semiconductor

# 74VHC4051 8-Channel Analog Multiplexer 74VHC4052 Dual 4-Channel Analog Multiplexer 74VHC4053 Triple 2-Channel Analog Multiplexer

#### **General Description**

These multiplexers are digitally controlled analog switches implemented in advanced silicon-gate CMOS technology. These switches have low "on" resistance and low "off" leakages. They are bidirectional switches, thus any analog input may be used as an output and vice-versa. Also these switches contain linearization circuitry which lowers the on resistance and increases switch linearity. These devices allow control of up to  $\pm 6V$  (peak) analog signals with digital control signals of 0 to 6V. Three supply pins are provided for V<sub>CC</sub>, ground, and V<sub>EE</sub>. This enables the connection of 0-5V logic signals when  $V_{CC}$ =5V and an analog input range of  $\pm\,5V$  when V<sub>EE</sub>=5V. All three devices also have an inhibit control which when high will disable all switches to their off state. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to  $V_{CC}$  and around.

74VHC4051: This device connects together the outputs of 8 switches, thus achieving an 8 channel Multiplexer. The binary code placed on the A, B, and C select lines determines which one of the eight switches is "on", and connects one of the eight inputs to the common output.

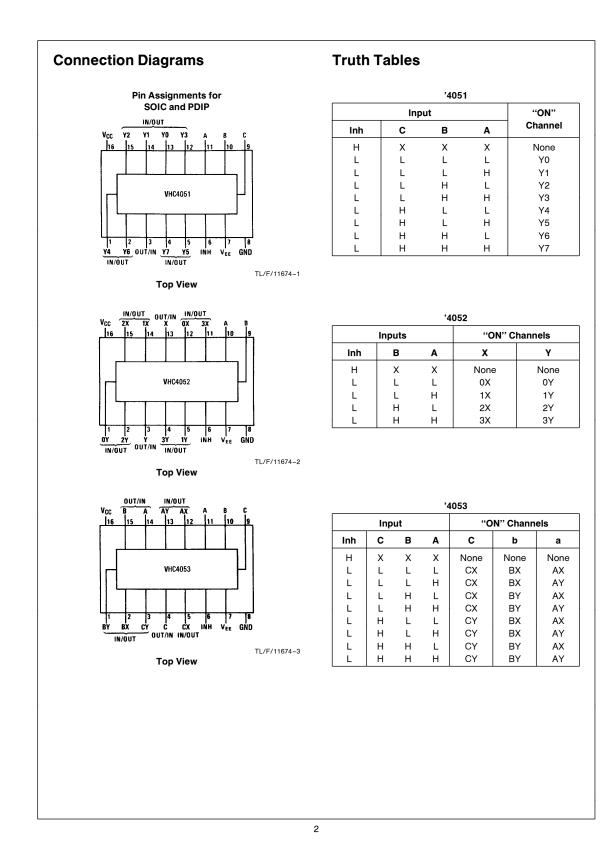
74VHC4052: This device connects together the outputs of 4 switches in two sets, thus achieving a pair of 4-channel

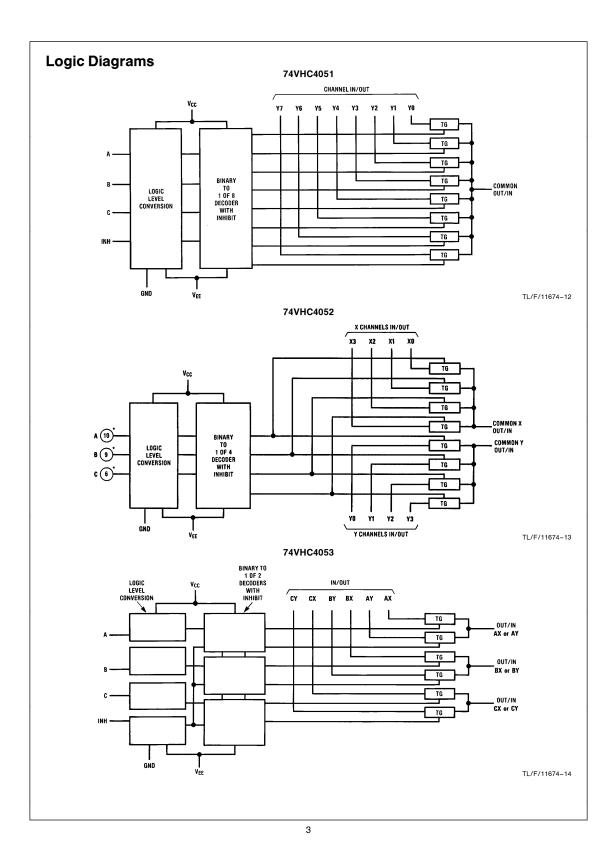
multiplexers. The binary code placed on the A, and B select lines determine which switch in each 4 channel section is "on", connecting one of the four inputs in each section to its common output. This enables the implementation of a 4channel differential multiplexer.

74VHC4053: This device contains 6 switches whose outputs are connected together in pairs, thus implementing a triple 2 channel multiplexer, or the equivalent of 3 singlepole-double throw configurations. Each of the A, B, or C select lines independently controls one pair of switches, selecting one of the two switches to be "on".

#### Features

- Wide analog input voltage range: ±6V
- $\blacksquare$  Low "on" resistance: 50 typ. (V<sub>CC</sub>-V<sub>EE</sub>=4.5V)
- 30 typ. (V<sub>CC</sub>-V<sub>EE</sub>=9V)
- Logic level translation to enable 5V logic with ±5V analog signals
- Low quiescent current: 80 µA maximum
- Matched Switch characteristic
- Pin and function compatible with the 74HC4051/ 4052/4053


| Commercial  | Package<br>Number | Package Description                     |  |  |  |  |  |
|-------------|-------------------|-----------------------------------------|--|--|--|--|--|
| 74VHC4051M  | M16A              | 16-Lead Molded JEDEC SOIC (0.150" Wide) |  |  |  |  |  |
| 74VHC4051WM | M16B              | 16-Lead Molded JEDEC SOIC (0.300" Wide) |  |  |  |  |  |
| 74VHC4051N  | N16E              | 16-Lead Molded DIP                      |  |  |  |  |  |
| 74VHC4052M  | M16A              | 16-Lead Molded JEDEC SOIC (0.150" Wide) |  |  |  |  |  |
| 74VHC4052WM | M16B              | 16-Lead Molded JEDEC SOIC (0.300" Wide) |  |  |  |  |  |
| 74VHC4052N  | N16E              | 16-Lead Molded DIP                      |  |  |  |  |  |
| 74VHC4053M  | M16A              | 16-Lead Molded JEDEC SOIC (0.150" Wide) |  |  |  |  |  |
| 74VHC4053WM | M16B              | 16-Lead Molded JEDEC SOIC (0.300" Wide) |  |  |  |  |  |
| 74VHC4053N  | N16E              | 16-Lead Molded DIP                      |  |  |  |  |  |


Note: Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

©1995 National Semiconductor Corporation TL/F/11674

RRD-B30M125/Printed in U. S. A.

74VHC4051 8-Channel, 74VHC4052 Dual 4-Channel and 74VHC4053 Triple 2-Channel Analog Multiplexers





## Absolute Maximum Ratings (Notes 1 & 2)

| Supply Voltage (V <sub>CC</sub> )                        | -0.5 to $+7.5V$                                                             |
|----------------------------------------------------------|-----------------------------------------------------------------------------|
| Supply Voltage (V <sub>EE</sub> )                        | +0.5 to $-7.5V$                                                             |
| Control Input Voltage (VIN)                              | $-1.5$ to $V_{\mbox{CC}}\!+\!1.5\mbox{V}$                                   |
| Switch I/O Voltage (VIO)                                 | $V_{\mbox{\scriptsize EE}}\!-\!0.5$ to $V_{\mbox{\scriptsize CC}}\!+\!0.5V$ |
| Clamp Diode Current (I <sub>IK</sub> , I <sub>OK</sub> ) | $\pm$ 20 mA                                                                 |
| Output Current, per pin (I <sub>OUT</sub> )              | $\pm$ 25 mA                                                                 |
| $V_{CC}$ or GND Current, per pin (I_{CC})                | $\pm$ 50 mA                                                                 |
| Storage Temperature Range (T <sub>STG</sub> )            | -65°C to +150°C                                                             |
| Power Dissipation (P <sub>D</sub> )                      |                                                                             |
| (Note 3)                                                 | 600 mW                                                                      |
| S.O. Package only                                        | 500 mW                                                                      |
| Lead Temp. (T <sub>L</sub> ) (Soldering 10 seco          | nds) 260°C                                                                  |
|                                                          |                                                                             |

| <u> ^.</u> | 201 | ntin | ~ ~  | hibac  | lione |
|------------|-----|------|------|--------|-------|
| Υ          | Jei | aun  | y uu | JIIUII | tions |

|                                                                     | Min                                                   | Max                | Units          |
|---------------------------------------------------------------------|-------------------------------------------------------|--------------------|----------------|
| Supply Voltage (V <sub>CC</sub> )                                   | 2                                                     | 6                  | V              |
| Supply Voltage (V <sub>EE</sub> )                                   | 0                                                     | -6                 | V              |
| DC Input or Output Voltage<br>(V <sub>IN</sub> , V <sub>OUT</sub> ) | 0                                                     | V <sub>CC</sub>    | V              |
| Operating Temp. Range (T <sub>A</sub> )<br>74VHC                    | -40                                                   | +85                | °C             |
| Input Rise or Fall Times<br>(t <sub>r</sub> , t <sub>f</sub> )      | $V_{CC} = 2.0V$<br>$V_{CC} = 4.5V$<br>$V_{CC} = 6.0V$ | 1000<br>500<br>400 | ns<br>ns<br>ns |

## DC Electrical Characteristics (Note 4)

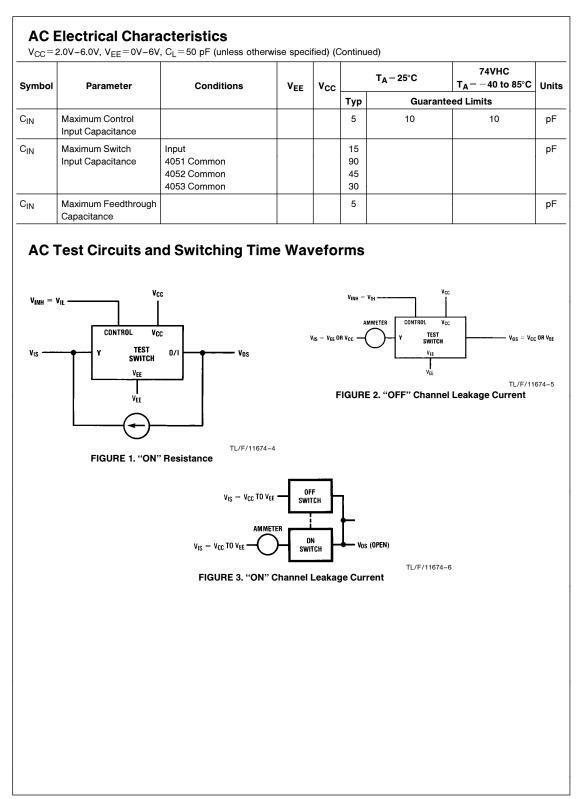
| Symbol          | Parameter                                                 |         | Conditions                                                                                                      | VEE                          | v <sub>cc</sub>      | T <sub>A</sub> =25°C  |                        | 74VHC<br>T <sub>A</sub> = - 40 to 85°C        | Units            |  |
|-----------------|-----------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|-----------------------|------------------------|-----------------------------------------------|------------------|--|
|                 |                                                           |         |                                                                                                                 |                              |                      | Тур                   | Guarante               | ed Limits                                     |                  |  |
| V <sub>IH</sub> | Minimum High Level<br>Input Voltage                       |         |                                                                                                                 |                              | 2.0V<br>4.5V<br>6.0V |                       | 1.5<br>3.15<br>4.2     | 1.5<br>3.15<br>4.2                            | V<br>V<br>V      |  |
| V <sub>IL</sub> | Maximum Low Level<br>Input Voltage                        |         |                                                                                                                 |                              | 2.0V<br>4.5V<br>6.0V |                       | 0.5<br>1.35<br>1.8     | 0.5<br>1.35<br>1.8                            | V<br>V<br>V      |  |
| R <sub>ON</sub> | Maximum "ON" Resistance<br>(Note 5)                       |         | $V_{INH} = V_{IL}$ , $I_S = 2.0 \text{ mA}$<br>$V_{IS} = V_{CC}$ to $V_{EE}$<br>(Figure 1)                      | GND<br>-4.5V<br>-6.0V        | 6.0V                 | 40<br>30<br>20        | 160<br>120<br>100      | 200<br>150<br>125                             | Ω<br>Ω<br>Ω      |  |
|                 |                                                           |         | $V_{INH} = V_{IL}$ , $I_S = 2.0 \text{ mA}$<br>$V_{IS} = V_{CC} \text{ or } V_{EE}$<br>(Figure 1)               | GND<br>GND<br>-4.5V<br>-6.0V |                      | 100<br>40<br>20<br>15 | 230<br>110<br>90<br>80 | 280<br>140<br>120<br>100                      | Ω<br>Ω<br>Ω<br>Ω |  |
| R <sub>ON</sub> | Maximum "ON" Resistance<br>Matching                       |         | $V_{CTL} = V_{IL}$<br>$V_{IS} = V_{CC}$ to GND                                                                  | GND<br>-4.5V<br>-6.0V        |                      | 10<br>5<br>5          | 20<br>10<br>10         | 25<br>15<br>12                                | Ω<br>Ω<br>Ω      |  |
| I <sub>N</sub>  | Maximum Control<br>Input Current                          |         | $V_{IN} = V_{CC}$ or GND<br>$V_{CC} = 2-6V$                                                                     |                              |                      |                       | ±.05                   | ±0.5                                          | μΑ               |  |
| Icc             | Maximum Quiescent<br>Supply Current                       |         | $V_{IN} = V_{CC} \text{ or GND}$<br>$I_{OUT} = 0 \ \mu A$                                                       | GND<br>- 6.0V                | 6.0V<br>6.0V         |                       | 4<br>8                 | 40<br>80                                      | μΑ<br>μΑ         |  |
| I <sub>IZ</sub> | Maximum Switch "OFF"<br>Leakage Current<br>(Switch Input) |         |                                                                                                                 | GND<br>6.0V                  | 6.0V<br>6.0V         |                       | ±60<br>±100            | $\begin{array}{c} \pm300\\ \pm500\end{array}$ | nA<br>nA         |  |
| I <sub>IZ</sub> | Maximum Switch<br>"ON" Leakage<br>Current                 | VHC4051 | V <sub>IS</sub> =V <sub>CC</sub> to V <sub>EE</sub><br>V <sub>INH</sub> =V <sub>IL</sub><br>( <i>Figure 3</i> ) | GND<br>6.0V                  | 6.0V<br>6.0V         |                       | ±0.1<br>±0.2           | ±1.0<br>±2.0                                  | μΑ<br>μΑ         |  |
|                 |                                                           | VHC4052 | V <sub>IS</sub> =V <sub>CC</sub> to V <sub>EE</sub><br>V <sub>INH</sub> =V <sub>IL</sub><br>( <i>Figure 3</i> ) | GND<br>6.0V                  | 6.0V<br>6.0V         |                       | ±0.050<br>±0.1         | ±0.5<br>±1.0                                  | μΑ<br>μΑ         |  |
|                 |                                                           | VHC4053 | $V_{IS} = V_{CC}$ to $V_{EE}$<br>$V_{INH} = V_{IL}$<br>(Figure 3)                                               | GND<br>6.0V                  | 6.0V<br>6.0V         |                       | ±0.05<br>±0.5          | ±0.5<br>±0.5                                  | μΑ<br>μΑ         |  |

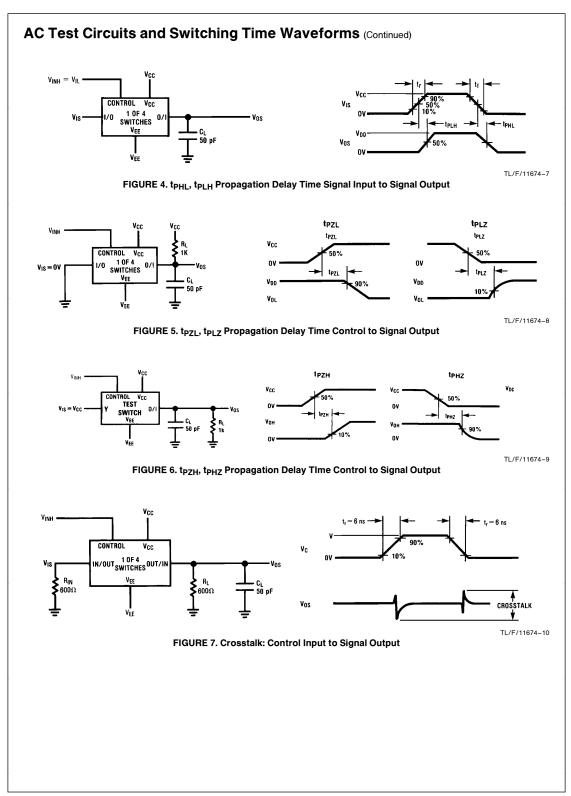
| DC I            | DC Electrical Characteristics (Note 4) (Continued) |         |            |                 |                 |                      |                |                                        |          |  |  |
|-----------------|----------------------------------------------------|---------|------------|-----------------|-----------------|----------------------|----------------|----------------------------------------|----------|--|--|
| Symbol          | Parameter                                          |         | Conditions | V <sub>EE</sub> | v <sub>cc</sub> | T <sub>A</sub> =25°C |                | 74VHC<br>T <sub>A</sub> = - 40 to 85°C | Units    |  |  |
|                 |                                                    |         |            |                 |                 | Тур                  | Guarante       | anteed Limits                          |          |  |  |
| l <sub>IZ</sub> | Current (Common<br>Pin)                            | VHC4051 |            | GND<br>6.0V     | 6.0V<br>6.0V    |                      | ±0.1<br>±0.2   | ±1.0<br>±2.0                           | μΑ<br>μΑ |  |  |
|                 |                                                    | VHC4052 |            | GND<br>-6.0V    | 6.0V<br>6.0V    |                      | ±0.05<br>±0.1  | ±0.5<br>±1.0                           | μΑ<br>μΑ |  |  |
|                 |                                                    | VHC4053 |            | GND<br>6.0V     | 6.0V<br>6.0V    |                      | ±0.05<br>±0.05 | ±0.5<br>±0.5                           | μΑ<br>μΑ |  |  |

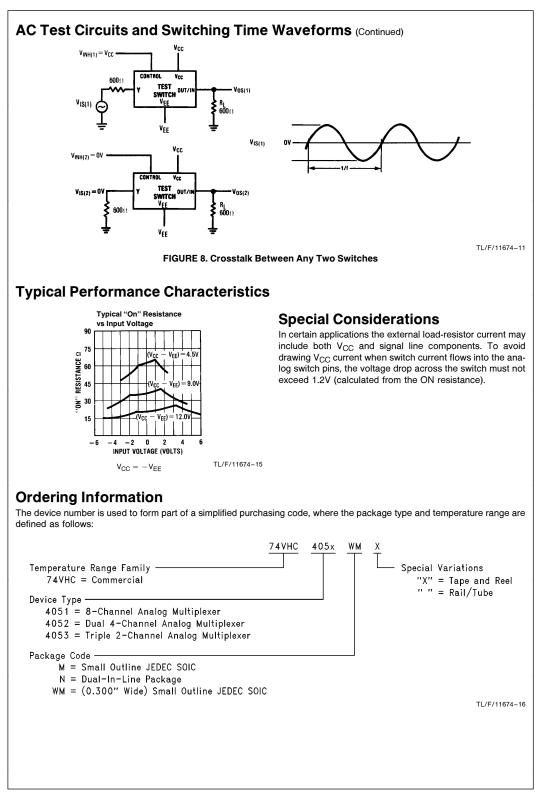
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

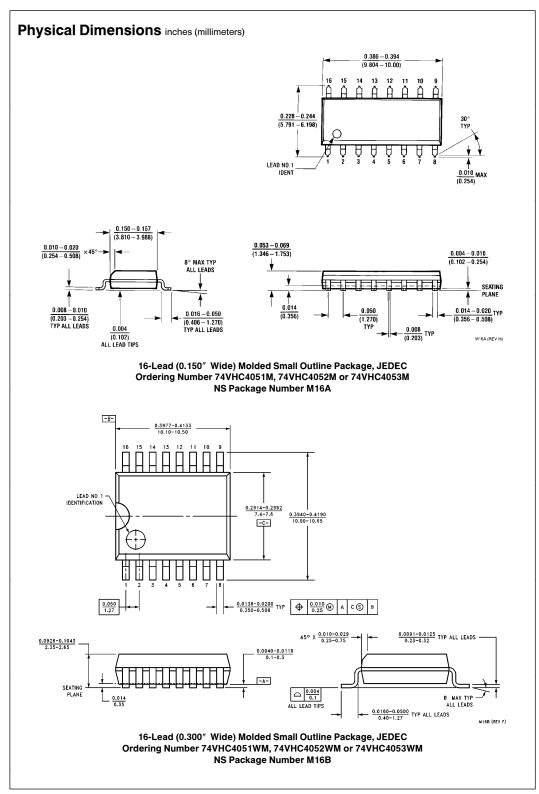
Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C.


Note 4: For a power supply of 5V  $\pm$ 10% the worst case on resistances (R<sub>ON</sub>) occurs for VHC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V<sub>IH</sub> and V<sub>IL</sub> occur at V<sub>CC</sub>=5.5V and 4.5V respectively. (The V<sub>IH</sub> value at 5.5V is 3.85V.) The worst case leakage current occur for CMOS at the higher voltage and so the 5.5V values should be used.

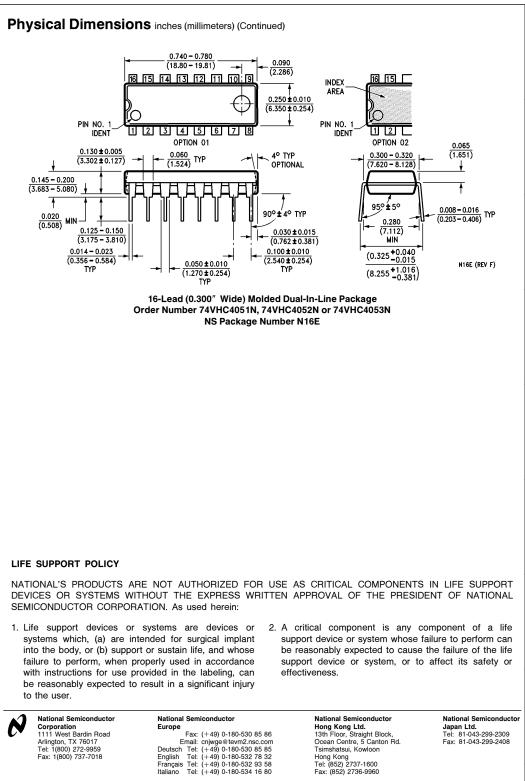

Note 5: At supply voltages (V<sub>CC</sub>-V<sub>EE</sub>) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.


Note 6: Adjust 0 dB for f = 1 kHz (Null R1/R<sub>ON</sub> Attenuation).

## AC Electrical Characteristics $v_{CC}$ =2.0V-6.0V, $V_{EE}$ =0V-6V, $C_L$ =50 pF (unless otherwise specified)


| Symbol                              | Parameter                                                                             | Conditions        |                                                                           | V <sub>EE</sub>                | v <sub>cc</sub>              | T <sub>A</sub> =25°C |                       | 74VHC<br>T <sub>A</sub> = - 40 to 85°C | Units                |
|-------------------------------------|---------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------|--------------------------------|------------------------------|----------------------|-----------------------|----------------------------------------|----------------------|
|                                     |                                                                                       |                   |                                                                           |                                |                              | Тур                  | Guaranteed Limits     |                                        |                      |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation<br>Delay Switch In to<br>Out                                      |                   |                                                                           | GND<br>GND<br>- 4.5V           | 3.3V<br>4.5V<br>4.5V         | 25<br>5<br>4         | 35<br>12<br>8         | 40<br>15<br>12                         | ns<br>ns             |
|                                     | Out                                                                                   |                   |                                                                           | -4.5V                          | 4.5V<br>6.0V                 | 4<br>3               | 8<br>7                | 12                                     | ns<br>ns             |
| t <sub>PZL</sub> , t <sub>PZH</sub> | Maximum Switch Turn<br>"ON" Delay                                                     | $R_L = 1 k\Omega$ |                                                                           | GND<br>GND<br>- 4.5V<br>- 6.0V | 3.3V<br>4.5V<br>4.5V<br>6.0V | 92<br>16<br>15       | 200<br>69<br>46<br>41 | 250<br>87<br>58<br>51                  | ns<br>ns<br>ns<br>ns |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Maximum Switch Turn<br>"OFF" Delay                                                    |                   |                                                                           | GND<br>GND<br>-4.5V<br>-6.0V   | 3.3V<br>4.5V<br>4.5V<br>6.0V | 65<br>28<br>18<br>16 | 170<br>58<br>37<br>32 | 210<br>73<br>46<br>41                  | ns<br>ns<br>ns<br>ns |
| f <sub>MAX</sub>                    | Minimum Switch<br>Frequency Response<br>20 log (V <sub>I</sub> /V <sub>O</sub> )=3 dB |                   |                                                                           | GND<br>4.5V                    | 4.5V<br>4.5V                 | 30<br>35             |                       |                                        | MHz<br>MHz           |
|                                     | Control to Switch<br>Feedthrough Noise                                                |                   | $\begin{array}{l} V_{IS} = 4 \ V_{PP} \\ V_{IS} = 8 \ V_{PP} \end{array}$ |                                | 4.5V<br>4.5V                 | 1080<br>250          |                       |                                        | mV<br>mV             |
|                                     | Crosstalk between<br>any Two Switches                                                 |                   | V <sub>IS</sub> =4 V <sub>PP</sub><br>V <sub>IS</sub> =8 V <sub>PP</sub>  |                                | 4.5<br>4.5V                  | -52<br>-50           |                       |                                        | dB<br>dB             |
|                                     | Switch OFF Signal<br>Feedthrough<br>Isolation                                         |                   | $V_{IS} = 4 V_{PP}$<br>$V_{IS} = 8 V_{PP}$                                |                                | 4.5V<br>4.5V                 | -42<br>-44           |                       |                                        | dB<br>dB             |
| THD                                 | Sinewave Harmonic<br>Distortion                                                       |                   | V <sub>IS</sub> =4 V <sub>PP</sub><br>V <sub>IS</sub> =8 V <sub>PP</sub>  |                                |                              | 0.013<br>0.008       |                       |                                        | %<br>%               |
















National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.